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Abstract

In this paper, we propose a quantification of the vulnerability of a communication network where

links are subject to failures due to the actions of a strategic adversary. We model the adversarial nature

of the problem as a 2-player game between a network manager who chooses a spanning tree of the

network as communication infrastructure and an attacker who is trying to disrupt the communication

by attacking a link. We use previously proposed models for the value of a network to derive payoffs

of the players and propose the network’s expected loss-in-value as a metric for vulnerability. In the

process, we generalize the notion of betweenness centrality: a metric largely used in Graph Theory to

measure the relative importance of a link within a network. Furthermore, by computing and analyzing

the Nash equilibria of the game, we determine the actions of both the attacker and the defender.

The analysis reveals the existence of subsets of links that are more critical than the others. We

characterize these critical subsets of links and related them to notions in Graph Theory. Using numerical

examples, we show that critical subsets depend both on the value model and on the connectivity of

the network. Finally we discuss how the critical subsets and the vulnerability metric can be used for

network improvement.

1 Introduction

“....one cannot manage a problem if one cannot measure it...”
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This study is an effort to derive a metric that quantifies the vulnerability of a communication network

when the links are subject to failures due to the actions of a strategic attacker. Such a metric can serve

as guidance when designing new networks in adversarial environments. Also, knowing such a value helps

identify the most critical/vulnerable links and/or nodes of the network, which is an important step towards

improving an existing network. We quantify the vulnerability as the loss-in-value of a network when links

are attacked by an adversary.

To analyze the vulnerability of networks, a common approach has been to use the theory of graphs.

Indeed, the interactions and interdependencies between members, parts and subsystems of a network can

be represented by (weighted) graphs [14]. Numerous papers and books have been written for this subject

and various vulnerability metrics have been proposed depending on the type of network (communication,

transport, financial, power grid), and the (sub)graph structure (flow and source-destination pairs–Ford,

Fulkerson [15]; shortest path–Freeman [5]; spanning tree–Tutte [23], Nash-Williams [19]; neighborhood

and cluster–Watts and Strogatz [24]; etc...) used to analyze the graph.

This paper follows the approaches by Tutte and Nash-Williams and uses spanning trees as the (sub)graph

structure to study and analyze graphs. Spanning trees have a number of desirable properties that have

made them a central concept in communication networking. A spanning tree of a connected graph G is a

minimal set of edges that connect all vertices. It can also be defined as a maximal set of edges of G that

contains no cycle. Also, in a spanning tree there is a unique path between any two nodes in the network.

As a consequence, communicating through a spanning tree guarantees connectivity using minimum amount

of resources while preventing undesirable loops in the network. The Spanning-Tree Protocol (STP-802.1D

1998) is the standard link management protocol used in bridged Ethernet local area networks. Spanning

trees (or the directed graph equivalent of spanning arborescences) also can be used to model access networks

and sensor networks where there is a central node that every other node is trying to connect to.

Although the present paper is about spanning trees, the approach presented here can be used with other

(sub)graph structures such as shortest path, flows and source-destination pairs, Hamiltonian cycle, etc...

In Gueye, Walrand, Anantharam, [8, Chap. 4] an example is provided where the focus is on flows between

a set of sources to a set of destinations.

We use spanning trees to quantify the importance of links as the relative loss-in-value of the network

when the links fail. Naturally, the first question towards such quantification is: “what is the value of a
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communication network?” The value of a network depends on many parameters including the number of

nodes, the number of links, the topology, and the type of communication/information that is carried over

the network. Assessing such a value is a subjective topic and, to the knowledge of the authors, there is no

systematic quantification of the value of a communication network. Attempts have, however, been made

to quantify (as a first order approximation) the value of a network as a function of its number of nodes.

These attempts include the laws by David Sarnoff [1], Robert Metcalfe [7], David Reed ([21]), Odlyzko et.

al. [3] and other laws mentioned later in the paper.

We build upon these models and use them in the process to quantify the vulnerability of a network. More

precisely, we use the models as a proof of concept for defining the importance of network links relative

to spanning trees in the follow way: When communication is carried over a spanning tree, any node can

reach any other node. In that sense, a spanning tree can be said to deliver the maximum value of the

network (indeed this ignores the cost of communication). This value can be determined by using one of

the models cited above. When one link that does not belong to the spanning tree fails, communication

can still be carried on between all nodes. If, on the other hand, the link belongs to the spanning tree, then

some exchanges that originally could be carried out become impossible. The spanning tree is separated

into two subtrees, each of them being a connected subnetwork. The nodes belonging to each subtree can

reach each other, hence each subnetwork delivers some value. However, the sum of the values delivered by

the two subnetworks is expected to be less than the value of the original network (where all nodes could

communicate). We define the importance of the link, relative to the spanning tree, to be this loss-in-value

(LiV) due to the failure of the link.

In this process, we propose a generalization of the notion of betweenness centrality ([25], [20]), which is a

measure of the importance a link has within a network.

Link failures, in traditional network reliability and fault tolerance analysis [18], are assumed to occur

because of random events (faults) such as human errors and/or machine failures. As such, probabilistic

tools have been used to model failures: the probability distribution often chosen in an arbitrary way. In

this paper, we consider scenarios where link failures are due to the action of a malicious and strategic

adversary who can analyze the network structure to decide which links to attack. The attack is conceptual

in this study but can be thought of as a physical attack, jamming or launching a denial-of-service (DOS)

against a particular link.
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We use a 2-player game theoretic model to study the static interaction between a defender (network

manager) an a malicious attacker and analyze the network vulnerability. Applying game theoretic models

to (this) security problem is a natural process and it has recently attracted a lot of interest (see surveys [22],

[17]). In the present paper, we use the graph of a network to set up a game between a network manager

who would like to choose a spanning tree as communication infrastructure in anticipation of an intelligent

attack by a malicious attacker who is trying to inflict the most damage. The adversary also chooses a link

to attack in anticipation of the choice of spanning tree. We use the network value models and the links’

LiV discussed above to derive payoffs for both players.

By analyzing the Nash equilibria of the game, we determine the actions of both the attacker and the

defender. We also identify the set of links that are most critical for the network and use them to define a

network vulnerability metric. The critical subsets depend both on the connectivity of the network as well

as the value model used to compute the links’ LiV.

Knowing the critical parts of a network is crucial for network design and improvement. For the general

model, computing a critical subset involves objects that are exponential in number (e.g.; spanning trees).

Thus, finding a critical subset is a priori a challenging task. We discuss two particular models where

efficient algorithms have been derived to compute critical subsets of a graph. We are still investigating

efficient algorithms for the general case.

The reader should be advised that the use of Game Theory in this paper is not meant to capture the

actual active interaction between a defender who dynamically chooses a spanning tree and an attacker who

dynamically tries to disrupt the communication. Game Theory is rather used here as a modeling tool to

study network configurations in adversarial environment. Instead of defining/setting failure probabilities

as it is done in conventional reliability analysis, we consider the worst-case scenario where a strategic

adversary studies the network structure to figure out the most damaging attack. The defender also does

the same.

The game theoretic model has allowed us to understand the attacker most damaging attack and the

defender’s best defense strategy; to identify the most critical links and relate them to well defined Graph

Theory notions; and to define a vulnerability metric for the network. We believe that the study in this

paper can be a good starting point for more realistic and certainly more complicated games where the

strategies are dynamically chosen; all the game parameters (e.g.; graph topology, attack cost, etc...) are
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not known to all players; and the actual network protocol, the link capacities as well as the nodes in the

network are taken into consideration.

The remainder of this paper is organized as follows. The next Section 2.1 discusses the different network

value models that we briefly introduced above. We use these models to compute the relative importance of

the links with respect to spanning trees. This is shown in Section 2.2, followed by our generalization of the

notion of betweenness centrality in Section 2.3. The strategic interaction between the network manager

and the attacker is modeled as a 2-player game which is presented in Section 3.1. The Nash equilibrium

theorem of the game is stated in Section 3.2 followed by a discussion and analysis of its implications

in Section 4. Section 4.1 presents an analysis and interpretation of the players’ strategies. Section 4.2

discusses our choice of metric for the vulnerability of a network. In Section 4.3 we discuss the critical

subsets in two models where closed-form characterization are found for the critical subsets and there exists

polynomial time algorithm to compute them. Two numerical examples are used in Section 4.4 to show 1)

the dependency of the critical subsets to the value model and to the connectivity of the network, 2) how

the vulnerability metric and the notion of critical subset can be used for network improvement. Concluding

remarks and future directions are presented in Section 5.

2 On the Value of a Communication Networks

The present paper is mainly concerned with quantifications of the value of a network as functions of its

number of nodes. In the next section, we discuss some of such quantifications.

The reader should be advised that the purpose of this paper is neither to compare the different value models

presented next, nor to decide which one is more realistic than the others∗ Rather, for a given model, we

are interested in quantifying the network vulnerability and deciding which network configuration is more

vulnerable, and for a given network configuration what are the links that are most critical.

2.1 Network value models

Attempts to assess the utility of a communication network as a function of the number of its members

include the proposition by David Sarnoff [1] who viewed the value of a network as a linear function of

its number of nodes f(G) = |V |. This law was mainly designed for radio/TV broadcast networks where

the popularity of a program is measured by the number of listeners/viewers. Considering networks where

∗In fact, we believe that each model makes “some sense” for the purpose it was designed for.
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each node can in principle communication with each other node (e.g. Ethernet), Robert Metcalfe [7] has

suggested that the value of a network grows as a function of the total number of possible connections

(f(G) = |V |2). David Reed ([21]) has proposed an exponential (f(G) = 2|V |) model for the utility of a

group forming network. This is the total number of possible groups that can be formed in a (connected)

network of |V | nodes. For Odlyzko et. al. [3] a more reasonable approximation of the value of a network

as a function of the number of nodes is f(G) = |V |log(|V |). This law particularly has a diminishing return

property which is missing in other models. Considering a friendship network, Walrand has proposed a

power law model where the value of a network is estimated as f(G) = |V |1+a, a ≤ 1. This law combines

and generalizes Sarnoff and Metcalfe’s laws. The parameter a is a design parameter and needs to be

specified. Details about these value models can be found in [10]. In a very recent paper [16], Aron et.al.

have considered a many-to-one (e.g.; Sensor Network) where there exists a designated node (S) (e.g.;

Gateway) to which every other node would like to connect to. In their model, the value of a network is

given by f(G) = |V |1S∈V , where 1S∈V indicates whether node S belongs to the network or not. While,

we were finishing editing the present paper, the authors in [16] have indicated that they have studied a

model where the value of a the network is equal to the size of its largest connected component (i.e.; the

maximum number of nodes that can communicate). In this model, f(G) = maxi |V (Gi)|, where Gi is a

connected component of a the graph G and V (Gi) is its node set.

Notice that while the last two models implicitly assume that the graph is (already) disconnected, the other

models are defined for connected graph. If the graph is (still) connected, the last two models are equivalent

to Sarnoff’s model. In this paper, we are interested in scenarios where the graph is “first” connected, hence

has a value of f(G), and “later” gets disconnected (to become G′) because of the action of a malicious

attacker. We compare the value f(G) to f(G′). Details of this is discussed in the next section.

2.2 Assessing importance of links via spanning trees

Assuming that a model has been determined for the value of a network, we quantify the importance

of a network link with respect to a spanning tree as the loss-in-value (LiV) when the link fails while

communication is carried over the tree. We will use this to derive players’ payoff in the game model we

present in Section 3.1.

The loss-in-value of a link, relative to a given spanning tree, is determined as follow. Since a spanning

tree is a connected subgraph of the network (see figure (1).b)), communicating over such subgraph can be
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seen as delivering the total “value” of the network. We let f(G) denote such a value. In general this value

depends on other aspects of the network (e.g.; topology, type of traffic, number of links). However, in this

paper, f(·) is assumed to be only a function of the number of nodes and can be chosen to be one of the

models discussed earlier. Also, there is in general a cost associated to the maintenance of each spanning

tree. In this paper, this cost is intentionally ignored and left for future studies. Finally, we assume that

f(∅) = 0; if the network contains 0 node (i.e is empty).

Now, assume that communication is carried over spanning tree T and a particular link e is removed from the

network. If e ∈ T (assuming a spanning tree to be a set of links), then T is partitioned into 2 subtrees; each

subtree Ti, i ∈ {1, 2} induces a connected component which we denote G
(T,e)
i (where we add the superscript

(T, e) to stress the fact that the subgraphs G
(T,e)
i are obtained by removing link e from spanning tree T ).

We let V (G
(T,e)
i ) denote the node set of G

(T,e)
i , with ni = |V (G

(T,e)
i )| (see Figure (1).c)). The value of the

resulting disconnected network G(T,e) = G
(T,e)
1 ∪G

(T,e)
2 is assumed to be f(G(T,e)) = f(G

(T,e)
1 )+ f(G

(T,e)
2 ).

As an example, for the Metcalfe model discussed above, f(G(T,e)) = |V (G
(T,e)
1 )|2 + |V (G

(T,e)
2 )|2. For Aron

et. al. model presented in [16], f(G(T,e)) = |V (G
(T,e)
1 )|1

S∈V (G
(T,e)
1 )

+ |V (G
(T,e)
2 )|1

S∈V (G
(T,e)
1 )

.

When link e is removed, some exchanges that could be carried on the original network become impossible.

As such, it is reasonable to assume that f(·) verifies f(G) ≥ f(G
(T,e)
1 ) + f(G

(T,e)
2 ), i.e.; the function f(·) is

superadditive. Notice that this is the case for all the network value models cited above. Hence, removing

link e ∈ T has reduced the value of the network from f(G) to f(G
(T,e)
1 ) + f(G

(T,e)
2 ). We define the

loss-in-value (LiV) of link e, relative to spanning tree T , to be equal to f(G) −
(

f(G
(T,e)
1 ) + f(G

(T,e)
2 )

)

.

If the link does not belong to the spanning tree, then removing it leaves the network connected and the

value of network is still f(G). As a consequence, if link e /∈ T , its LiV, relative to spanning tree T , is equal

to 0. In conclusion, the normalized LiV of link e, relative to spanning tree T is defined as

λ(T, e) = 1 −
f(G

(T,e)
1 ) + f(G

(T,e)
2 )

f(G)
. (1)

with the understanding that if e /∈ T , G
(T,e)
1 = G and G

(T,e)
2 = ∅, giving λ(T, e) = 0.

Writing this expression for all spanning trees and all links of the network, we build the tree-link LiV matrix

Λ defined by Λ[T, e] = λ(T, e).

Remark 1 With the definition in (1), the normalized LiV of a link relative to any spanning tree is always
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equal to zero under Sarnoff’s model (i.e λ(T, e) = 0, ∀e and T ). This makes the discussion below irrelevant

for that model. Consequently, we drop Sarnoff’s model for the remainder of this paper. Instead, we discuss

a close model introduced in [12]), which we denote GWA model. It is a simple model that gives the same

normalized LiV of 1 if the link e belongs to the spanning tree and 0 otherwise (i.e. λ(T, e) = 1 − 1e/∈T ).

The model basically assumes that whenever a link on the spanning tree is removed (hence disconnecting it),

the network loses its entire value. This is the case in distributed applications where each single node has

to receive the sent information in order for an operation to be carried (e.g. consensus).

Table (1) shows the LiV of links for the different models presented above. It is assumed that removing link

e divide spanning tree T into two subtrees with respectively n1 and n2 nodes (n1 + n2 = n)

2.3 A Generalization of the Betweenness Centrality Measure

The quantification we have described above for the significance of a link is relative to spanning trees: there

is a different value for each different tree. In general, one would like to get a sense of the importance of a

link for the overall network. Betweenness centrality is a measure that has long been used for that purpose.

Next, we propose a quantification of the importance of a that generalizes the notion of betweenness. We

start by recalling the betweenness centrality measure as it was defined by Freeman [5].

For link e, and nodes i and j, let gi,j be the number of shortest paths between i and j and let gij(e) the

numbers of those paths that contain e. The partial betweenness centrality of e with respect to i and j is

defined as ϑij(e) =
gij(e)

gij
and the betweenness centrality of e is defined as ϑ(e) =

∑

i<j ϑij(e).

Freeman has given a probabilistic interpretation of the partial betweenness. If we assume that the two points

i and j are indifferent with respect to which of several alternative geodesics carries their communications,

the probability of using any one is α(Pij) = 1
gij

. The partial betweenness is hence equal to the expected

number of shortest paths between i and j that use e. Also, notice that in this definition, the importance

of link e with respect to a path pij is equal to 1 if e ∈ pij and 0 if it is not. λ(pij , e) := gij(e) is the total

value of e for a communication between i and j.

We use this interpretation to generalize the betweenness centrality to quantify the importance of a link.

Since we are interested in spanning trees, we write the definition with respect to spanning trees (instead

of paths).

ϑ(e, λ, α) =
∑

T

α(T )λ(T, e), (2)

8



where the summation is now over spanning trees.

Our generalization allows both the consideration of non-binary weights of the links as well as a preference

for spanning tree utilization. Here, the weights λ(T, e) of the links, with respect to spanning trees, are

taken to be the links’ LIV mentioned above. In general some spanning trees are preferable to others. There

are many reasons for such a preference among spanning trees. They include, among others, the cost of

utilizing the links, the overall communication delay and the vulnerability of links and the vulnerability to

attack. In this paper, where the focus is on adversarial environments, the preference of spanning tree α(T )

is derived from the mixed strategy Nash equilibria in a game between a network manager who chooses a

spanning tree as communication infrastructure and an adversary who tries to cut off the communication

by attacking one link. Details of the game are presented next.

3 Game Theoretic Approach

3.1 Game model

The game is over the links of the network with a topology given by a connected undirected graph G = (V , E)

with |E| = m links and |V| = n nodes. The set of spanning trees is denoted T ; we let N = |T |. These

assumptions (connected and undirected) can be easily relaxed by considering spanning forests and spanning

arborescence instead of spanning trees.

To get all nodes connected in a cycle-free way, the network manager chooses a spanning tree T ∈ T of the

graph. Running the communication on spanning tree T requires a maintenance cost of η(T ) to the network

manager. The attacker simultaneously selects an edge e ∈ E to attack. Each edge e ∈ E is associated

with some cost µ(e) that an attacker needs to spend to launch a successful attack on e. For the network

manager, the LiV λ(e, T ) of link e relative to spanning tree T is given by (1). This is how much the

network manager loses when he chooses tree T and link e happens to be attacked. This loss goes to the

attacker. More precisely, for a choice pair (T, e) of tree and edge, the net loss is η(T ) + λ(T, e) for the

network, while the net attack reward is equal to λ(T, e) − µ(e) for the attacker. It is also assumed that

the attacker has the option of not attacking, which results in a zero net reward for the attacker and a zero

loss for the manager. We let e∅ denote that option.

The pure strategy sets are the set T of spanning trees for the manager and the set E of edges for the

attacker. We are mainly interested in analyzing mixed strategy Nash equilibria of the game. We let
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{α ∈ ℜN
+ |

∑

T∈T α(T ) = 1} be the set of mixed strategies for the network manager, and {β ∈ ℜm
+ |

∑

e∈E β(e) = 1} the set of mixed strategies for the attacker. The defender is choosing α to minimize the

expected net communication cost L(α, β) while the attacker is choosing β to maximize the expected net

reward R(α, β).

L(α, β) =
∑

T∈T

α(T )

(

η(T ) +
∑

e∈T

β(e)λ(T, e)

)

, (3)

R(α, β) =
∑

e∈E

β(e)

(

∑

T∋e

α(T )λ(T, e) − µ(e)

)

. (4)

In the sequel, we have focused on the case where η(T ) = η is constant; hence not relevant to the optimization

in (3), which now becomes the minimization of
∑

T∈T α(T )
∑

e∈T β(e)λ(T, e). As a consequence, we ignore

η(T ) for the rest of this paper. The general case of η(T ) will be considered in subsequent studies.

3.2 Nash equilibrium theorem

The Nash equilibrium theorem was established in Gueye et. al. [8, Chap. 4] using the theory in Blocking

Pairs of Polyhedra. For completeness purposes, we briefly recall it here. A quick tutorial on the theory

of Blocking Pairs of Polyhedra can be found in that reference. In this paper, we show that the vertices of

the blocker of the payoff matrix correspond to Minimal Disconnecting Subsets (MDS) (see Appendix A )

of links. As such, we reduce the discussion of the Nash equilibrium theorem below to subsets of links of

the graph.

Let Λ be the N × m nonnegative tree-link payoff matrix whose entries are defined in (1). The polyhedron

PΛ associated with Λ is defined as the vector sum of the convex hull of its rows (λ1, . . . , λN ) and the

nonnegative orthant:

PΛ = conv.hull (λ1, . . . , λN ) + R
m
+ . (5)

The blocker bl(PΛ) of PΛ is the polyhedron given as:

bl(PΛ) =
{

y ∈ R
m
+ : Λy ≥ 1T

}

. (6)

We assume that the graph of the network contains more than 1 spanning tree (otherwise the game is

trivial). With this assumption and the definition in (1), it is easy to verify that matrix Λ does not contain

an all-zeros row. As a consequence, both PΛ and its blocker bl(PΛ) are well defined and non-trivial.
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Now, let ω be a vertex (i.e.; an extreme point) of bl(PΛ). We have shown in the appendix that the support

of ω is a minimal disconnecting set (MDS); call it Eω . To ease notation, we drop the subscript (unless

needed) and assume, in the sequel, that E is the support of ω and the pair (ω, E) is always given together.

Let W the set of all MDS that correspond to vertices ω ∈ bl(PΛ). We write ω = (ω(e), e ∈ E), also

we define κ(E) :=
∑

e∈E ω(e). Note that ω(e) ≥ 0 for all e ∈ E (with strict inequality only if e ∈ E)

and ω(E) > 0†; so that β = (ω(e)
κ(E) , e ∈ E) is a probability distribution on E . We call it the probability

distribution associated to (ω, E).

Also for each E ∈ W , consider the quantity

minT∈T

(
∑

e∈E ω(e)λ(T, e)
)

κ(E)
; (7)

This quantity is the minimum loss seen by the defender if the attacker were to choose a target accord-

ing to the distribution (ω(e)
κ(E) , e ∈ E) associated to (ω, E). A closer look at the expression above shows

that the numerator is equal to 1. In fact, we already know that if ω belongs to the blocker bl(PΛ),

∑

e∈E ω(e)λ(T, e) ≥ 1 for all T ∈ T . Now, if ω is a vertex of the blocker bl(PΛ), one can easily show that,

there must exist some To such that
∑

e∈E ω(e)λ(Toe) = 1. If this is not the case, then we can divide ω by

this minimum sum and obtain ω̃ which belongs to bl(PΛ) and is strictly dominated by ω. This contradicts

the assumption that ω is a vertex. Thus we can drop the minimization and rewrite the quantity above as

1
κ(E) .

Finally, let us define θ(E) as

θ(E) :=
1

κ(E)

(

1 −
∑

e∈E

ω(e)µ(e)

)

. (8)

θ(E) is the expected attack reward associated (ω, E) if the attacker were to choose a resource to attack

according to the distribution β = (ω(e)
κ(E) , e ∈ E).

We call the subset E ⊆ W a critical subset if

θ(E) = max
F∈W

θ(F ) . (9)

We define θ∗ := maxF∈W θ(F ) and we let C denote the set of all critical subsets.

†This is because the blocker bl(PΛ) is not empty (Λ is not a one-rowed zero matrix), and does not contain the all-zero
vector–the origin (PΛ is not empty).
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We are now ready to state the Nash equilibrium theorem of the game. We claim that:

Theorem 1 For the game defined above, the following always hold.

1. If θ∗ ≤ 0, then “No Attack” (i.e. β(e∅) = 1) is always an optimal strategy for the attacker. In this

case, the equilibrium strategy (α(T ), T ∈ T ) for the defender is such that

ϑ(e, λ, α) =
∑

T∈T

α(T )λ(T, e) ≤ µ(e), ∀e ∈ E . (10)

The corresponding payoff is 0 for both players.

2. If θ∗ ≥ 0, then for every probability distribution (γE , E ∈ C) on the set of critical subsets, the

attacker’s strategy (β(e), e ∈ E) defined by

β(e) =
∑

E∈E

γEβE(e) (11)

is in Nash equilibrium with any strategy (α(T ), T ∈ T ) of the defender that satisfies the following

properties:










ϑ(e, λ, α) − µ(e) = θ∗ for all e ∈ E such that β(e) > 0.

ϑ(e, λ, α) − µ(e) ≤ θ∗ for all e ∈ E .
(12)

Furthermore, there exists at least one such strategy α.

The corresponding payoffs are θ∗ for the attacker, and r(γ) for the defender, where

r(γ) :=
∑

E∈C

γE

κ(E)
. (13)

3. If µ = 0, then every Nash equilibrium pair of strategies (α, β) has the form given in (11) and (12).

4. For all µ ≥ 0, then in every Nash equilibrium the attacker payoff is equal to θ∗.

Proof: Items 1-3 of the theorem have been proved in [8, Chap. 4] for a more general game. The proof of

Item 4 is provide in Appendix B.
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4 Discussion and Analysis

The Nash equilibrium theorem gives a characterization of the attacker’s maximum net attack gain θ∗ in

any Nash equilibrium; and depending on the sign of this net gain, there are two decisional situations. If

the maximum gain is negative (θ∗ < 0), the attacker will not launch an attack and the defender randomly

chooses a spanning tree according to a distribution α that satisfies (10). This randomization is necessary for

the equilibrium to hold. When the gain is nonnegative (θ∗ ≥ 0), the equilibrium strategy for the attacker

is to always launch an attack that focuses only on edges belonging to critical subsets. Her randomized

strategy is a convex combination of the probability distributions induced by the critical subsets. In this

case, the defender chooses a spanning tree according to a probability distribution that satisfies (12). When

there is no cost associated with launching an attack (µ = 0), the attacker’s maximum net gain is always

positive and she will always launch an attack. In this case, the theorem gives a closed form characterization

(Item 3) of all Nash equilibrium pairs (α, β) of the game: β has the form in (11), while α has to satisfy

(12).

4.1 Attacker and Defender Equilibrium Strategies

The attacker’s equilibrium strategy is completely defined by the structure of the graph, the network value

model and the cost to attack (µ–whenever it is not zero). In fact, the attacker’s strategy is derived from a

vertex of the blocker polyhedron (bl(PΛ)), which is solely dependent on the graph structure and the network

value model. This indicates that a sophisticated attacker would analyze the topology of the graph to decide

which links to attack. This contrasts with conventional reliability models where the failure probability of

a link is chosen without any consideration of the structure of the graph.

Also, the attacker’s strategy focuses only on links that are critical (see equation (11)). If there is no

cost associated to launching an attack (i.e.; µ = 0–which corresponds to the most powerful adversary), the

attacker targets only links that have maximum expected loss-in-value (LiV–ϑ(e, λ, α)). This can be seen in

inequalities in (12), which, when µ = 0, become ϑ(e, λ, α) ≤ θ∗, for all e ∈ E ; with equality whenever link

e is targeted with positive probability (β(e) > 0). These links, which are attacked with positive probability,

correspond in this case to the most important ones for the defender. For general cost of attack µ ≥ 0, the

attacker’s strategy is such that each attacked link gives the maximum possible net reward achievable in any

Nash equilibrium (see equation (12) and Item 4 of the theorem). When attacking become expensive and

the maximum net attack reward is negative (θ∗ < 0), the attacker does not launch one.
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The defender’s equilibrium strategy α can be interpreted as the best way to choose a spanning tree in the

presence of a strategic adversary. In fact, as a best response to the attacker’s strategy, α minimizes the

total expected LiV. Each entry α(T ) of the distribution vector is an indication about the robustness of

spanning tree T –whenever α(T ) = 0 choosing spanning tree T implies high expected loss due to an attack.

The defender’s choice of α also quantifies how much importance a given link has within the network. Here,

a link with ‘high importance’ is one that has a high average LiV. When there is no attack cost associated

to an attack, the probability distribution α is such that the most important links corresponds to the most

critical ones. When attacking requires a relatively substantial effort the maximum expected net attack

reward can be negative θ∗ < 0. In this case the defender chooses the distribution α such that the attacker

has no incentive to attack. Such a choice can be seen as a deterrence tactic for the defender.

4.2 Vulnerability Metric: Critical vs Important Links

The vulnerability metric (θ∗) proposed in this paper reflects both the importance of network links as well as

the willingness of an attacker to attack them. This is a desirable feature for a vulnerability metric because

no rational adversary will launch an attack if the expected net attack reward is less than zero. On the

other hand, links with high importance and low cost of attack are very attractive to adversaries.

For the analysis of the vulnerability metric θ∗ one needs to make the interesting “distinction” between the

importance of a link and its criticality. The importance that a link has within the network is quantified by

its average LiV ϑ(e, λ, α). It is specified by the defender’s choice of α and the network value model f(G).

The criticality indicates the net gain an attacker receives by attacking the link. It depends not only on the

importance of a link, but also on the cost of attacking the link. The vulnerability metric θ∗ corresponds to

the criticality of the most critical links. When there is no cost associated to launching an attack (µ = 0),

criticality and importance coincide: θ∗ = ϑ(e∗, λ, α), where link e∗ is a critical link.

Notice that, similar to the attacker’s equilibrium strategy, the vulnerability metric θ∗ is completely defined

by the structure of the graph, the network value model and the cost to launch attacks µ. This is also the

case for critical subsets (θ∗ is equal to the criticality of the most critical subsets). Example 1 below is an

illustration of this dependency while Example 2 shows how the vulnerability metric can be used in network

improvement.
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4.3 Critical Subsets

We have shown (by the NE theorem and appendix A) that a critical subset of links is necessarily a minimal

disconnecting set (MDS) of the graph. In some particular cases of network value model, there exists a

closed-form characterization of critical subsets. Next, we discuss GWA [11] and Aron’s [16] models. We

assume that the attack cost µ = 0 (which corresponds to the most powerful attacker).

Recall that for the GWA model introduced in [11] we have λT,e = 1 − 1e/∈T . In this case, the vertices of

the blocker polyhedron have been characterized [6] and κ(E) = |E|
Q(G\E)−1 , for any subset of links E such

that G\E is disconnected; Q(G\E) is the number of connected components of the graph G when edges in

E are removed. In this case, the vulnerability θ∗ is defined as

θ∗ = max
E⊆E

(

Q(G\E) − 1

|E|

)

. (14)

This vulnerability metric (actually its inverse) has been previously proposed by Gusfield [13] in a related

but slightly different (non-game theoretic) context. In [13] σ(G) = minE⊆E

(

|E|
Q(G\E)−1

)

= 1
θ∗ was used as

a measure of the invulnerability of the graph, i.e. the smaller this is the more vulnerable the graph is.

Inspired by Cunningham [4] an algorithm is presented in [11] that computes θ∗ and a critical subset in

polynomial time. The algorithm is essentially based on the Max-Flow/Min-Cut algorithm.

In [16], Aron et. al consider a Many-to-One network model where there exists a designated node S to

which all other nodes want to communicate with. Indeed, connecting all nodes to S using the minimum

number of links results to a spanning tree that is rooted at S. With this model, the links’ LiV are defined

as λT,e = 1 −
n11S∈V1+n21S∈V2

n , where it is assumed that removing link e from spanning tree T divides the

nodes of the network into two groups V1 and V2 of sizes V1 = n1 and V2 = n2, n1 + n2 = n. In this case,

κ(E) = |E|
ρ(E) , for any subset of links E such that G\E contains at least one node that is disconnected from

S; ρ(E) is the number of nodes that are disconnected from S. The vulnerability is given by

θ∗ =
1

n
max
E⊆E

(

ρ(E)

|E|

)

=
1

n

1

π(G)
, (15)

where π(G) is defined (actually renamed) as the persistence of the graph G. This metric was also previously

proposed [4] as a measure for the strength of a directed graph.
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The authors of [16] have derived a polynomial time algorithm to compute θ∗ and a critical subset in

this case. As in the previous case, the algorithm proposed here is also based on the Max-Flow/Min-Cut

algorithm.

While we were finishing editing this paper, the same authors of [16] have indicated (in a preprint which we

received a copy of) that they have studied a model where the value of a (disconnected) network is equal

to the size of its biggest connected component. With this model, they have also derived a polynomial

algorithm to compute θ∗ and a critical subset.

As seen earlier, efficient algorithms was derived to compute critical subsets in the particular cases discussed

above. For the general case, a naive approach to compute a critical subset would be to consider each MDS

(there is an exponential number of them), and for each one, solve a linear program which involves the

spanning trees of the graph (there is also an exponential number of them) to compute the function κ(·).

This is intractable for any practical example of network. We are investigating the general case to find

out whether an efficient algorithm can be derived; and if not, for which network value models an efficient

algorithm exists.

4.4 Numerical Examples

Example 1 Critical Subsets, Value Model and Topology

The vulnerability of a network (hence its critical subsets of links) depend on the model used for the value

of the network and on its topology. The present example gives an illustration.

Figure 2(a) shows an example of a network with the critical subsets for the different value models discussed

earlier. The example shows a core network with a set of bridges connecting it to peripheral nodes. A bridge

is a single link the removal of which disconnects the network. In all figures, the critical subset of links is

shown in dashed line. In this discussion we mainly assume that the attack cost µ is equal to zero.

Figure 2(a).a shows the critical subset corresponding to the GWA t model for which λT,e = 1 − 1e/∈T .

With this model, the defender loses everything (i.e. 1) whenever the attacked link belongs to the chosen

spanning tree. Since a bridge is contained in any spanning tree, attacking a bridge gives the maximum gain

to the attacker. As a consequence, the critical subsets correspond to the set of bridges as can be observed

in the figure.

For the other models, first notice that the LiV function g(x) = f(n) − (f(x) + f(n − x)) is increasing in
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the range 0 ≤ x ≤ n/2 (g(·) is symmetric around n/2). This indicates that the maximum loss-in-value

is achieved when a spanning tree is divided into subtrees of comparable sizes. Hence, in a network, one

can expect innermost links to be more critical (because they belong to many spanning trees and divide

each one in comparable size subtrees). This intuition seems to be confirmed by the examples shown in

Figure 2(a).b which depicts the critical subsets with the Metcalfe, OBT, and Walrand (a = 0.6) models.

For all three models the most critical links are the innermost or core links of the network. Reed’s model,

however, deviate from this observation as can be seen in Figure 2(a).c. With this model, the critical links

are the links giving access to the core network. One explanation of this deviation can be found by having

a closer look at the LiV function g(x) whose curve is plotted in Figure 2(c). We can see that Reed’s model

coincides with the GWA model for a wide range of x. This indicates that links that are critical with GWA

(i.e.; bridges in this case) tend to remain critical with Reed’s model. But, because of the property of

g(·) mentioned above, inner links are preferable to outer links in Reed’s model. That is exactly what we

observe in Reed’s model where inner bridges constitute the critical links. These observations suggest that

the critical subsets of a graph depend on the value model used to setup the game.

Connectivity is another factor that characterizes the critical subset(s). Figure 2(b) demonstrates this point

in an example of network that has the same topology as in the previous example with one additional (core)

link. With this additional link, the connectivity of the core network is enhanced. The critical subset does

not change for the GWA models. However, for all other 4 models, the critical subset is now the access to

the core.

Example 2 Network Improvement

Identifying the network vulnerability and the critical subsets (the weakest points of the network) of a

network is necessary for network management, risk assessment, and prioritization for link maintenance and

repair. In this example, we discuss network improvement using the vulnerability metric and the notion of

critical subset discussed in this paper. The graphs in Figure (3) are an illustration.

Assume that the network topology is given by the graph in Figure (3(a))–denoted ‘N0’; the node S rep-

resents the gateway in Aron’s model. In all other models (Walrand (a = 0.6), Metcalfe, BOT, Reed, and

GWA), there is no designated node and all nodes are assumed to play a similar role. Table (2) (column 2)

shows the vulnerability of the network for the models cited above. Figure (3(b)) shows the critical links

in Aron’s model while Figure (3(c)) shows the critical links for all the other models (they have the same
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critical subset in this particular case–but not the same vulnerability, as can be seen in Table (2) (column

2)).

Now, suppose that the network manager has an extra link to add to this network and would like to know

the optimal way to do so. Figures (3(d))-(3(f)) show 3 different ways to add the link resulting to 3 different

networks (respectively denoted ‘N1’, ‘N2’, ‘N3’). Table (2) (columns 3-5) shows the vulnerability of those

networks for the different network value models discussed in this paper. Figures (3(g))-(3(o)) show the

corresponding critical subsets. Figures (3(g))-(3(i)) show the critical subsets for Aron’s model; Figures

(3(j))-(3(l)) those for the GWA model; and finally, Figures (3(m))-(3(o)) show the critical for Walrand,

Reed, Metcalfe, and OBT models. Column 6 of Table (2) shows the comparison of the vulnerability for

the 3 configurations for the different models.

The comparison shows that for all models, configuration ‘N3’ corresponds to the less vulnerable network.

Notice that, in general, among all spanning trees, a star spanning tree is the most robust against the type

of attack described in this paper (this is not true when attacks target nodes instead of links). This explains

why configuration ‘N3’ (which is a star-like network–node S is connected to all but 1 node) is preferable to

‘N1’ (except for GWA model where they have the same vulnerability). Surprisingly, ‘N2’ is also star-like

(in the same sense as ‘N3’), however, in all models, ‘N3’ is strictly less vulnerable to ‘N2’. Furthermore,

for Reed and GWA models, network ‘N1’ has a smaller vulnerability than ‘N2’. One reason might be that

‘N3’ and ‘N1’ contain more independent cliques than ‘N2’ (cliques that do not share a link). Indeed, each

clique contains |C| different star spanning trees, where |C| is its size (i.e.; number of nodes). This variety

of choices can explain why configuration ‘N2’ is less robust (recall here that the network manager chooses

a spanning tree as communication infrastructure–hence the more independent spanning trees, the better

it is). Notice that, as in the previous discussion, GWA and Reed models deviate from the other models.

A better understanding of these observations requires a thorough analysis of the different model functions,

which is the subject of future studies.

5 Conclusion and Future Work

In this study, we quantify the vulnerability of a communication network where links are subject to failures

due to the actions of a strategic attacker. Such a metric can serve as guidance when designing new

communication networks and determining it is an important step towards improving existing networks.
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We build upon previously proposed models for the value of a network, to quantify the importance of a

link, relative to a spanning tree, as the loss-in-value when communication is carried over the tree and

the link is taken down by a strategic attacker. We use these values to setup a 2-player game where

the defender (network manager) chooses a spanning tree of the network as communication infrastructure

and the attacker tries to disrupt the communication by attacking one link. We propose the equilibrium’s

expected loss-in-value as a metric for the vulnerability of the network. We analyze the set of Nash equilibria

of the game and discuss its implications. The analysis shows the existence of subsets of links that are more

critical than the rest. We characterize these sets of critical subsets and, using examples, we show that such

critical subsets depend on the network value model as well as the connectivity of the graph. The nature of

this dependency is an interesting question that we are planning to investigate in future studies. We also

show, via numerical examples, how the vulnerability metric and the notion of critical subset can be used

for network improvement. We also discuss models where efficient algorithms that can be used to compute

critical subsets were derived. Finally, we propose a generalization of the notion of betweenness centrality

that allows different weights for the links as well as preference among the graph structures that carry the

communication (e.g. spanning trees for this paper).

Several future directions are being considered as a followup to this paper. First, in the present publication,

we have discussed the critical subsets using illustrative examples. To get a better intuition about the

relationship between the value function and the critical subset of the network, a more rigorous analysis of

the game value function (κ(E)) is needed. With such analysis we will be able to integrate and understand

more realistic (and potentially more complicated) network value models. Also, in this paper, we use

spanning trees to define the relative importance of links. This implicitly considers only networks in which

things flow through spanning trees. However, our result is general and can be used to study games on

other types of networks. One interesting extension is the situation where the network manager chooses

p ≥ 1 spanning trees (example p = 2 is the situation where the manager chooses a communication tree and

a backup one), and the attacker has a budget to attack k ≥ 1 links. Also, we have assumed, in this paper,

that the cost of communicating over any spanning tree is the same. In the future, we will study versions of

the problem where some spanning trees might be more costly then others. Finally, this study has focused

on the failure of links in a network. Nodes also are subject failures: whether random or strategic. A more

thorough study should consider both links and nodes.
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A Minimum Disconnecting Subset (MDS)

We start by the following definition.

Definition 1 Let E be the set of edges of the graph G, and let E ⊆ E be a subset of edges.

1. E is said to be a disconnecting set (DS) of G, if removing the edges on E disconnects the graph (and

results into 2 or more connected components).

2. E is said to be a minimal disconnecting subset (MDS) if E is a disconnecting set such that, for every

edge e ∈ E, adding e to G\E (the graph obtained by removing, from G, the edges in E) decreases its

number of connected components by 1.

Figure (4) shows examples of DS’s and MDS’s. The first example (leftmost) is not a DS. The second

example is a DS but is not a MDS. The third example is a MDS. It is also the minimum cut of the graph.

However, in general MDS’s are not minimum cuts. The last example shows a MDS that in not a minimum

cut.

Let Λ be the N × m nonnegative tree-link payoff matrix whose entries are defined in (1). The polyhedron

PΛ associated with Λ is defined as the vector sum of the convex hull of its rows (λ1, . . . , λN ) and the

nonnegative orthant:

PΛ = conv.hull (λ1, . . . , λN ) + R
m
+ . (16)

The blocker bl(PΛ) of PΛ is the polyhedron given as:

bl(PΛ) =
{

y ∈ R
m
+ : Λy ≥ 1T

}

. (17)

Lemma 1 Let ω ∈ bl(PΛ) be an extreme point (vertex) of bl(PΛ) and let S(ω) be its support (i.e.; the set

of indices with positive entry). Then, S(ω) corresponds to a MDS of the graph.

Proof: The proof works as follow. First, notice that if a subset E is not a DS, there exists a spanning tree

T such that T ∩ E = ∅. Hence, for any vector y with support E,
∑

e∈E λ(T, e)ye =
∑

e∈E λ(T, e)ye = 0.
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As a consequence y cannot belong to bl(PΛ). So, the support of any vector in bl(PΛ) is a DS. Now assume

that y is a vertex and its support S(y) is not an MDS. Then S(y) contains a an edge eo = (u, v) such that

u and v belongs to the same connected component (say Vo) of G\S(y). Furthermore, Vo has a path puv

that does not contain eo. We have argued in Section (3.2) that since y is a vertex there exists a spanning

tree To such that
∑

e∈E λ(To, e)ye = 1. Now, if λ(T, eo) = 0 for all T such that
∑

e∈E λ(T, e)ye = 1, we

can build ỹ = y − ǫ1eo
, where 1eo

is the vector with all zero entries except entry eo which is equal to 1.

For ǫ chosen small enough ỹ belongs to bl(PΛ) and is strictly dominated by y; which contradicts the fact

that y is a vertex.

If λ(To, eo) > 0 for some To verifying
∑

e∈E λ(To, e)ye = 1, then let T1 = To − eo + e1, where e1 belongs to

the path pu,v. Notice that ye1 = 0 because e1 does not belong to the support S(y). We have that

∑

e∈E

λ(T1, e)ye =
∑

e∈E

λ(To, e)ye − λ(To, eo)yeo
+ λ(To, e1)ye1 = 1 − λ(To, eo)yeo

+ λ(To, e1)ye1 .

But, λ(To, e1)ye1 = 0 and λ(To, eo)yeo
, hence,

∑

e∈E λ(T1, e)ye < 1, which means that y does not belong

to bl(PΛ); a contradiction. Hence, we get the lemma.

B Proof of Item 4 of Theorem 1

Note: The proof below is inspired by a pre-print by Lemonia Dritsoula, Patrick Loiseau, and John

Musacchio.

For recall, for ω a vertex of the blocker polyhedron (17) we define κ(ω) =
∑

e∈E ω(e) and

θ(ω) :=
1

κ(ω)

(

1 −
∑

e∈E

ω(e)µ(e)

)

. (18)

and

θ∗ = max
ω

θ(ω) . (19)

We would like to show that if β is a Nash equilibrium strategy for the attacker, than the associated

attacker’s payoff is equal to θ∗. For this, we will first argue that a Nash equilibrium strategy β

To understand this, first recall from Item 2 of the theorem that there exists a Nash equilibrium strategy of

the attacker that is derived from the vertices ω of the blocker polyhedron. The attacker’s payoff associated

to this strategy is θ∗. Now, consider any attacker’s strategy β. Let θ(β) be the payoff associated to β
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when the defender plays her best response. Since the defender wants to minimize the expected loss given

in (3),

θ(β) = min[Λβ] − µ′β, (20)

where the minimum above is taken on the entries of the vector Λβ.

Now, let us recall the notion of best response polyhedron introduced in [2]. The best response polyhedron

for the defender is defined as the set of her mixed strategies with the upper envelope of expected payoffs

(and any larger payoff) ν to the attacker.

{

(x, ν) ∈ R
N × R | x ≥ 0, 1′x = 1, (Λ − U)

′
x ≤ ν1m

}

, (21)

where the matrix U has the same dimensions as Λ and has each row equal to µ′. Notice that, since x is

assumed to be a probability distribution, U ′x = µ. Thus, the equation above can be written as

{

(x, ν) ∈ R
N × R | x ≥ 0, 1′x = 1, Λ′x − µ ≤ θ(β)1m

}

, (22)

where in the above equation, we have replaced the attacker’s expected payoff ν by its value θ(β).

The defender’s best response is a solution of the following linear program:

Minimizeαα′Λβ

subject to Λ′α − µ ≤ θ(β)1m (23)

α ≥ 0, 1′α = 1

The dual of this LP can be written as

Maximize y,z (−1mθ(β) − µ)
′
y + z

subject to z1T − Λy ≤ Λβ (24)

y ≥ 0, z ≥ 0

Looking at the constraints of z1T ≤ Λ(β + y) 24, we see that the optimal value for z should be chosen as
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z = min[Λ(β + y)]. Replacing this back to the dual LP, we get

Maximize y − 1′
myθ(β) − µ′y + min[Λ(β + y)]

y ≥ 0. (25)

Next, we show that

Lemma 2 If β is a Nash equilibrium strategy, than the LP defined in (23) is feasible.

This must be true because if β is a NE strategy, than there exists a corresponding defender’s strategy

which is a best response to β. Thus, the best response polyhedron is not empty.

Now, we have all the ingredients to prove Item 4 of the theorem, which we re-state here (in slightly different

words) as a lemma for the reader’s interest.

Lemma 3 If β is a NE strategy for the attacker, then θ(β) is maximum and is equal to θ∗.

Notice that, since we know (by Item 2) that there exists at least one NE strategy derived from the vertices

of the blocker polyhedron and it gives a payoff of θ∗, if the lemma is true, then θ(β) = θ∗.

Proof: Suppose that the attacker’s strategy is such that θ(β) < θ(ξ) where ξ = arg max ˜β
θ(β̃), is a NE

strategy (1′
mξ = 1). Let y = τξ for τ ≫ 1 chosen large enough. Then, (25) becomes

Maximize τ − τ1′
mξθ(β) − τµ′ξ + min[Λ(β + τξ)] (26)

Notice that Λβ > 0. In fact, if this vector has a zero entry, then min[Λβ] = 0 and θ(β) < 0 which means

that β cannot be a NE strategy. Similarly Λξ > 0 Hence, for large τ ≫ 1, only the entries of Λ(τξ) are

relevant to find the minimum in the last term of (26). In other terms,

min[Λ(β + τξ)] = min[Λ(τξ)] + Cst = τ min[Λξ] + Cst, (27)

where the constant above is the value of Λβ at the entry with minimum value in Λξ. The objective function
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in (26) can be re-written as

− τ1′
mξθ(β) − τµ′ξ + τ min[Λξ] + Cst = −τ1′

mξθ(β) − τµ′ξ + τ min[Λξ] + Cst

= −τθ(β) + τ (τ min[Λξ] − µ′ξ) + Cst (28)

= τ (θ(ξ) − θ(β)) + Cst, (29)

where in (28) we use the fact that 1′
mξ = 1 and in (29), we use the definition in (20).

Now, since θ(ξ) > θ(β), (29) can be made as large as possible. This means that the dual (24) is unbounded,

which implies that the primal (23) is infeasible. But this contradicts Lemma 2 ( with the assumption that

β is a NE strategy). Thus, θ(β) must be maximal.

This results also explains why in Item 1 of the theorem, the attacker never launches an attack when θ∗ < 0.

Since any NE will give θ∗ and not attacking always guarantees 0, the attacker is better off not attacking

when θ∗ < 0.
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Figure 1: Tree-Link model for the value of a network link. a) Complete network with link ’e’ of interest
shown in bold. b) A particular spanning tree ’T ’ of the graph. c) Disconnected network when link ’e’ is
removed.

Table 1: Normalized LiV of link e relative to spanning tree T for the different laws. Removing link e from
spanning tree T divide the network into two subnetwork with respectively n1 and n2 nodes (n1 + n2 = n).

Model Normalized LIV
GWA 1e∈T

Metcalfe 1 − n2
1+n2

2

n2

Reed 1 − 2−n1 − 2−n2

OBT 1 − n1 log(n1)+n2 log(n2)
n log(n)

Walrand 1 −
n1+a

1 +n1+a
2

n1+a

Aron 1 −
n11S∈V1+n21S∈V2

n
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Figure 2: Critical subsets. 1-Figure 2(a): dependency on network value models: a) GWA b) OBT, Walrand,
and Metcalfe c) Reed. 2-Figure 2(b): dependency on connectivity: a) GWA b) OBT, Walrand, and Metcalfe

c) Reed. 3-Figure 2(c):Comparison of the loss functions 1 − f(x)+f(n−x)
f(n) .

Table 2: Network vulnerability.
Model N0 N1 N2 N3 vulnerability
Aron 3/(2x7) 3/(2x7) 6/(5x7) 6/(5x7) N3 = N2 < N1

Walrand 0.1853 0.1669 0.1461 0.1321 N3 < N2 < N1
Metcalfe 0.2682 0.2449 0.2099 0.1909 N3 < N2 < N1

OBT 0.2049 0.1755 0.1659 0.1494 N3 < N2 < N1
Reed 0.5752 0.4689 0.4775 0.4268 N3 < N1 < N2
GWA 3/4 3/5 2/3 3/5 N3 = N1 < N2

26



1

2

3 4

5

6

7 8

9

10

S

(a) N0

S

(b) Aron

(c) All oth-
ers

1

2

3 4

5

6

7 8

9

10

11

S

(d) N1

1

2

3 4

5

6

7 8

9

10

11

S

(e) N2

1

2

3 4

5

6

7 8

9

10

11

S

(f) N3

S

(g) Aron

S

(h) Aron

S

(i) Aron

(j) GWA

(k) GWA

(l) GWA

(m)
W,R,M,OBT

(n)
W,R,M,OBT

(o)
W,R,M,OBT

Figure 3: Network improvement example.

Not edge-cut Not minimal
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Figure 4: Examples of disconnecting sets (DS) and minimal disconnecting sets (MDS). The chosen subset
is shown in dashed line. The leftmost example is not a DS. The next example is a DS but is not a MDS
because the red link connect two nodes belonging to the same connected component. The third example
is a MDS. It is also a minimum edge-cut of the graph (the one with the minimum size). The rightmost
example is a MDS but not a minimum edge-cut.
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